Achaete-Scute Homolog 1 Expression Controls Cellular Differentiation of Neuroblastoma
نویسندگان
چکیده
Neuroblastoma, the major cause of infant cancer deaths, results from fast proliferation of undifferentiated neuroblasts. Treatment of high-risk neuroblastoma includes differentiation with retinoic acid (RA); however, the resistance of many of these tumors to RA-induced differentiation poses a considerable challenge. Human achaete-scute homolog 1 (hASH1) is a proneural basic helix-loop-helix transcription factor essential for neurogenesis and is often upregulated in neuroblastoma. Here, we identified a novel function for hASH1 in regulating the differentiation phenotype of neuroblastoma cells. Global analysis of 986 human neuroblastoma datasets revealed a negative correlation between hASH1 and neuron differentiation that was independent of the N-myc (MYCN) oncogene. Using RA to induce neuron differentiation in two neuroblastoma cell lines displaying high and low levels of hASH1 expression, we confirmed the link between hASH1 expression and the differentiation defective phenotype, which was reversed by silencing hASH1 or by hypoxic preconditioning. We further show that hASH1 suppresses neuronal differentiation by inhibiting transcription at the RA receptor element. Collectively, our data indicate hASH1 to be key for understanding neuroblastoma resistance to differentiation therapy and pave the way for hASH1-targeted therapies for augmenting the response of neuroblastoma to differentiation therapy.
منابع مشابه
A chicken achaete-scute homolog (CASH-1) is expressed in a temporally and spatially discrete manner in the developing nervous system.
We have identified a basic helix-loop-helix encoding cDNA from embryonic chicken retina which shares sequence similarity with the achaete-scute family of genes of Drosophila. The deduced amino acid sequence of this chicken achaete-scute homolog (CASH-1) is identical, over the region encoding the basic helix-loop-helix domain, to the recently identified mammalian achaete-scute homolog (MASH-1) a...
متن کاملEvolutionary conservation of a cell fate specification gene: the Hydra achaete-scute homolog has proneural activity in Drosophila.
Members of the Achaete-scute family of basic helix-loop-helix transcription factors are involved in cell fate specification in vertebrates and invertebrates. We have isolated and characterized a cnidarian achaete-scute homolog, CnASH, from Hydra vulgaris, a representative of an evolutionarily ancient branch of metazoans. There is a single achaete-scute gene in Hydra, and the bHLH domain of the ...
متن کاملMammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells.
Using monoclonal antibodies, we have examined the expression pattern of MASH1, a basic helix-loop-helix protein that is a mammalian homolog of the Drosophila achaete-scute proteins. In Drosophila, achaete-scute genes are required for the determination of a subset of neurons. In the rat embryo, MASH1 expression is confined to subpopulations of neural precursor cells. The induction of MASH1 prece...
متن کاملIdentification of a human achaete-scute homolog highly expressed in neuroendocrine tumors.
Basic helix-loop-helix transcription factors of the achaete-scute family are instrumental in Drosophila neurosensory development and are candidate regulators of development in the mammalian central nervous system and neural crest. We report the isolation and initial characterization of a human achaete-scute homolog that is highly expressed in two neuroendocrine cancers, medullary thyroid cancer...
متن کاملNematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway.
achaete-scute homologs (ash) regulate neural development in all bilaterian model animals indicating that they represent a component of the ancestral neurogenic pathway. We test this by investigating four ash genes during development of a basal metazoan, the cnidarian sea anemone Nematostella vectensis. Spatiotemporal expression of ash genes in the early embryo and larval stages suggests that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2016